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in.model-hased controb-algorithms.~lw-this paper; we evaluaté the effect of changing theAontrol sampling period
on the performance of the copfputed-torque and independent Juint control schemes While the foriner utilizes
the cownplete dynamics m:g‘él of the manipulator, the latter assumes a decoupled and linear model of the
manipulator dynamics. V@ discuss the design of controller gains for both the computed-torque and the
independent joint control schemes and establish a framework for comparing their trajectory tracking
performance. Qur_experiments show that within each scheme the trajectory tracking accuracy varics slightly
with the change of The sampling rate. However, at low sampling rates the computed-torque scheme outperforms

“. the independent joint control scheme. Based on our experimental results, we also conclusively establish the

importance of high sampling rates as they result in an increased stiffuess of the system. .

1. Introduction 3

Althousth  many siluul‘.lllu/ results have been presented [13, 12, 1], the  real-time implementation  and
performance of model-hasedfeontrol schemes with high control sampliig rates had not been demonstrated on
actual manipulators, until frecently 9, 11, 1] The main reasons for this have been the lack of a suitable
uanipulator system and the fact that it is difficult to evaluate the dynamics parameters for implementing
model-based algorithms. One of the goals of the CMU Dircet-Dreive Arm I [t} project has been to overcome
these difficalties and evdluate the effect of dynamics compensation on the real-Ume trajectory tracking of
manipulators. For the feal-time computation of the inverse dynamics, we have developed a high-speed and
powerlul computationalfenvironment. The computation of inverse dynamics has been customized for the CMU
DD Arm I and a computation time of | ms hat been achieved [5]. To obtain an accurate model we have
compnted and mcusuréd the various parameters from the engineering drawings of the CMU DD Arm II by
modeling each link ilS]"(l composite of hollow and solid cylinders, prisms, and rectangular parallelopipeds. We
have also proposed ag algorithm to identify the dynamics parameters 18} which has heen implemented on the
CMU DD Arm L. The results of the experimental implementation of our identification algorithm are presented
in 16, 7). Finally, the negligible friction in our direct-drive arm especially makes it suitable to test the efficacy of
the computed-torque scheme.

In our previous research, we investigated the cffect of high sampling rate dynamics compensation in model-
based manipulator control methods. Specifically, we compared the comnputed-torque scheme which utilizes the
cotnplete dynamics model of the manipulator with the independent joint control scheme {9] and the fecdforward
compensation method [10]. The control schemes were implemented on the CMU DD Arm H with a sampling
period of 2 ms. In this paper, we investigate the effect of reducing the sampling rate on the trajectory tracking
performance of manipulator control methods. We first compare the performance of each scheme as the sampling
rate is changed. Next, we also compare the relative performance of both the computed-torque and the
independent joint control schemes at different sampling rates.
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This paper is organized as follows: In Section 2, we present an overview of the manipulator control schemnes
that have been implemented and evaluated on the CMU DD Arm . The design of controllers is discussed in
Section 3 and the real-time experimental results are presented and interpreted in Section 4. Finally, in Scction 5
we summarize this paper. In the Appendix, we describe our experimental hardware set-up.

2. Manipulator Control Techniques i

The robot control problem revolves around the computation of the actuating joint torques/forces to follow the
desired trajectory. The dynamics of a manipulator are described by a set of highly nonlincar and coupled
differential equations. The complete dynamic model of an N degrees-of-freedom manipulator is described by:

r = D(8)d + h(0,6) + g(9) (1)

where 7 is the N-vector of the actuating torques; D(0) is the NX N_position dependent manipulator inertia
matrix; h(9,6) is the N-vector of Coriolis and centrifugal torques; g(0) is the .N-vector of gravitational torques;
and 0, § and 8 are N-vectors of the joint accelerations, velocities and positions, respectively.

This complex description of the system makes the design of controllers a difficult task. To circumvent the
difficulties the control engincer often assumes a simplificd model to proceed with the controller design.

Industrial manipulators are usually controlled by conventional PID-type independent jaint control structures
designed under the assumption that the dynanies of the links are nncoupled and lincar. The controllers based
on such an overly simplified dynamics model result in low speeds of operation and overshoot o the end-cifector.

To establish a frumework for comparing the performance these two schetney, we consider the control law n
two steps; computation of the commanded acceleration and computation of the cuntrol torque. The commanded
joint accelerations u, can be computed in one of the following three ways:

u =KJ0,-0-KJ : (2
u, = K (0,~0) + K (0,0 : {3)
uy = K (0,-0) + K (0,~6) + 0, (1)

where K and K are N N diagonal position and velocity gain matrices, respectively. The N-vectors 8 and 0
are the (ivsircd and measured joint positions, respectively, and the * - * indicates the time derivative of the
variables. Whereas only the position error and the velocity damping is used in {2), the commanded acceleration
signal in (3} uses a velocity feedforward term, and the commanded acceleration signal in (1) uses both the
velocity and acceleration feedforward terms. The idea is to increase the speed of response by incorporaling a
feedforward term.

The fundamental difference between the independent joint control schemes and the model-based schemes lies
in the secand step in the control law, i.e., the method of computing the applied control torque signals from the
commanded acceleration signals. [If the vector of actuating joint torques r is computed from the commanded
acceleration signal under the assumption that the joint inertias are constant, then we obtain an independent
joint control scheme. On the other hand, il the actuating torques r are computed from the nverse dynarmics
model in (1) then we obtain the computed-torque schewne.

We have implemented computed-torque and the independent joint control schemes and compared their real-
time performance as a function of the sampling rate. These schemes are described in the sequel.
epepdent Joint t

In this scheme, linear PD control laws were designed for each joint based on the assumption that the joints are
decoupled and linear. The control torque 7 applied to the joints at each sampling instant is:

r = Ju, _ (5)
where J is the constant VX N diagonal matrix of link inertias at a typical position.
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Computed-Torque Control (CT)

This scheme utilites nonlinear feedback to decouple the manipulator. The control torque 7 is computed by the
inverse dynamics equation in (1), using the commanded acceleration u, insteid of the measured acceleration é:

T == D(o)u‘ + ﬁ(o,o’ + i(a) (6)

where the * ~ ® indicates that the estimated values of the dynamics parameters are used in the computation.

The real-time control experiments using these schemes have been performed with the CMU DD Arm (. Also,
we have used the Equation 4 o compute the accelerations for both the computed-torque and the independent
joint control schemes. Before proceeding with the design of the controller gain matrices, we need to deterine
the order and transfer function of the individual joint drive systems. We achieved this by performing frequency
response experiments. The details of these experiments are presented in [9, 6}.

\

3. Controller Design

The petformance of the nonlincar CT scheme and the linear 1JC scheme can be compared only if the same
criteria are used for design of the controller gain matrices. Fortunately, this is possible because the gain
matrices K and K appear only in the commanded accclerations which are the same (Equations (2)-(4)) for both
¢T and B8 schemes. Thus, whether we implement the simplistic independent joint control scheine or the
sophisticated computed-torque scheme, we are faced with the problemn of designing the gain matric~s Kp and
K, . These matrices are chosen to satisfy the specified output response criterion.

3.1. Design of Gain Matrices for Independent Joint Control
The closed loop transfer function relating the input 0).“ to the measured output 0) for joint jis:

2
i s 6+s‘7/¢v1+km.

- 7)
[} 2 (
i) %+ kwa +k”.

where y=1 if velocity fecdforward is included and zero otherwise, and é==1 if acceleration feedforward is
included and zero otherwise. The closed-loop characteristic equation in ail the three cases is,

2+ k8 +k, =0 (8)

and its roots arc specified to obtain a stable rcsponse. The complete closed-loop response of the system is
governed by both the zeros and the poles of the system. In.the absence of any feedforward terms, the response is
governed by the poles of the transfer function.

Since it is desired that none of the joints overshoot the commanded position or the respoﬁse be critically
damped, our choice of the matrices Kp and K_ must be such that their elements satisfy the condition:

k, = 2\/1:” forj = 5 {9)

Besides. in order to achieve a high disturbance rejection ratio or high stiffness it is alio necessary to choose the
position gain matrix Kp as large as possibie which resuits in a large K

1.2, Design of Gain Matrices for Computed-Torque Scheme

The bacie atea bebimd the computed torpe scheme 15 1o achiove dyspanie decoupling of Ml the Joints using
nonimear feedback  1F the dymamie model of the manipulator is desceibed by (1) and the apphed control torque
s computed acenrding to (6), then the following closed-loop systenuis abtained:

b=u DD DO kR k- g}

where the functional dependencies on 0 and 0 have been omitted forthe sake of clarity. If the dynamics are
modeled exactly, thatis, 1 21, f=.h and g=g, then the deconpledclosed loop system is deseribed by
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Uipon substituting the right hand side of cither (2), (3) or (4) in the above cquation, we obtain the closed-loop
input-output teansfer function of the system. The rlosed-loop characteristic equation in all the three cases is:

"
8"+ kus + kw =0 (10

where k. and k- are the velocity and position gains for the j-th joint. Upon comparing (8) and (10}, we obtain
the relationships '

K CT g MO gk €T g (1)
] ) v v;
which suggest that the gains of the 1JC scheme are also the gains of the CT scheme. This equality must be
expected because the closed-loop characteristic equation for both the independent joint control and the

computed-torque scheme is the same,

3.3. Gain Selcction

The gain matrices K and K are a function of the sampling rate of the control system [3]. The higher the
sampling rate the larger the values of K and K can be chosen.” Since the stiffness (or disturbance rcjection
property) of the system is governed by t"e position gain matrix a higher sampling rate implies higher stifTness
also. In practice the choice of the velocity gain K is limited by the noise present in the velocity measurement.
We determined the upper limit of the velocity gain experimentally: we set the position gain to zero and
increased the velocity gain of each joint until the uninodeled high-frequency dynamics of the system were excited
by the noise introduced in the velocity measurement. This value of K represents the maximum allowable
velocity gain. We chose 80%5 of the maximum velocity gain in order to obtain as high value of tke position gain
as possible and still be well within the stability limits with respect to the unmodeled high frequency dynamies.
The clements of the position gain matrix K_ were computed to satisly the critical damping condition in (9) and
also achieved the maximum disturbance rejection ratio. The elements of the velocity and position gain matrices
used in the implementation of the control schemes arc listed in Table 1.

4. Experiments and Results

4.1. Trajectory Selection and Evaluation Criteria

Sinee the DD Arm 11 is a highly nonlinear and coupled system it is impossible to characterize its behavior from
a particular class of inputs, unlike linear systems for which a specific input (such as a unit stepor a ramp) can be
used to design and evaluate the controllers. Thus an important constituent of the experimental evaluation of
tobot control ~chemes is the o hee of 4 class of inpats for the robot. The eriteria for selectmg the joint
teajectories is detailed in 6] Tor evabiating the perfurmance of robot contral schemes, ve use the dvnamic
trarking aecuracy.  This s defined as the mavinam position and velocity tracking error along a specified
trajectory. )

4.2, Real-Time Results

th our experiments we implemented both the independent joint control scheme and the computed-torque
ccheme, We evalmated their wdividual and selative performances by changing the sampling rate hut keeping
both the posit.on and the velocity gain matrices fixed. The nvamum permissible veloaity and position gains
were chosen at a control sampling period of 3 ms (according to the mathad outlined in Section 3.3 j and remained
fixed even when the samphing period was changed. This allows us to determine the offect of the sampling rate on
the trajectory teacking control performance . We have also evaluated the best performance of the CT method
for 1 sampiing geciod of 2 ms with its best pvrform.xﬁcr for a sampling period of 5 ms. We conducted the
evaluation experiments an a multitude of trajectories but due to space limtations we present our resulte for a
sunple but illustrative trajectory.

The tirst trajectory is chosen to be simple and relatively slow but capable of providing insight mto the effect of
dynamics compensation. In this trajectory only joint 2 muves while all the other joints are commanded to hokl
their zero positions and can be envisioned fromn the schematie diageam in Figure 1. Joint 218 rommanded to
start from its zero posttion and 10 reach the position of 1.5 rad in 0.75 seconds; it remains at this pesition for an
interval of 0.75 seconds after which it is requited to return to its home postion in 0.75 seconds. The points of
discontinuity, in the trajectory, were joined hy a fifth-order polynomial to maintain the continuity of position,
velocity and aceeleration along the three segments. The desired position, velocity and acceleration trajectories
for joint 2 are depicted in Figure 2. The maximum velocity and acceleration to be attained hy joint 2 are 2
rad/sec and b r.ld,’\'i'tzv respectively.




The position tracking performance of joint 2 for both the CT and 1JC schemes, for a control sampling rate of
200 i1z {corresponding to a control sampling period of 5 ms), is depicted in Figure 3. The corresponding position
and velocity tracking errors are presented in Figures 4 and 5, respectively. We also depict the position tracking
error of joint 1 in Figure 6 for both the CT and 1JC schemes. We note that the CT sxcheine outperforms the JC
scheme. For cxample, in the case of joint 2 the maximumn position tracking crror for CT scheme is 0.03 rads
while for the 1JC scheme it is 0.45 rads, approximately. In an eatlier paper [8], we had compared both the CT
and 1JC schemes with a control sampling period of 2 ms. It must be noted that in the earlier reported
experiments [9] the gains were selccted for a control sampling period of 2 ms whereas in the present experiments
the gains have been sclected for a control sampling period of 5 ms. To put the results in perspective, we recall

. that in the earlier experiment the maximum position tracking error for the CT method was 0.022 rads while for
the 1JC method it was 0.036 rads. From the above observations it may be deduccd that increasing the control
sampling period from 2 to 5 ms results in 2 noteworthy degradation of the performance of the IJC scheme. A
similar increase in the sampling rate also improves the performance of the CT scheme.

In Figure 7, we depict the performance of the CT scheme as the sampling rate is increased from 200 Hz to 500
Hz. In this case the position and velocity gain matrices were determined for a sampling rate of 200 Hz and they
remained fixed even when the sampling rate was increased to 500 Hz. Thus, Figure 7 presents the relative
petforinance of the CT method as a function of the sampling rate only. We note that the trajectory tracking
petformance for both 200 Hz and 500 Hz sampling rates is comparable and has not changed in any appreciable
mannee aith an inceease in the anpling e, Figure 8 depicts the resalts for the LC incthod when a similar
experiment was performed.  In this case also we do not observe any apprecinble change in performance when
only the sampling rate is changed.

Thus, from the above set of experiments the following conclusions may be drawn:

1.1 the gains are selected for 4 lower sampling rate and then if the sampling rate is increased, while
keeping the gains fixed, there is no appreciable improvement in the petformance of both the CT and
the JC schunes.

2. At lower sampling rates the CT scheme ontperforms the 1JC inethod. Even though the disturbance
rejection ratio of both the schemes is diminished, it does not appreciably affect the CT method
because of the compensation for the nonlinear and coupling terms. Whereas it affeets the [JC
method because the disturbance that is constituted by the nonlinear and the coupling terms is not
rejected appreciably.

. If the maximum possible gains are selected for the chosen sampling rates then the performance of CT
at a higher sampling rate is better than its performance at a lower sampling rate. A similar
condlusion is drawn for the [JC scheme also. :

Our last conslusion is especially significant because it suggests that a higher sainpling rate does not only imply
improved performance but it also allows us to achieve high stiffness. [t is desirable for a manipulator to have
high stiffness so that the effect of unpredictable external disturbances on the trajectory tracking performance is
sigtificantly reduced.

5. Summary

In this paper, we have presented the first experimnental evaluation of the effect of the sampling rate on the
performance of both the computed-torque and the independent joint control schemes. We have discussed the
design of the controller gains for both the independent joint control and the computed-torque schemes and
cstablished a framework for the comparison of their trajectory tracking performance. Based on our experiments
we have demonstrated that the computed-torque scheme exhibits a better performance than the independent
joint control scheme. Our experiments also show that high sampling rates are important because they result ina
stiffer system that is capable of effectively rejecting unknown external disturbances.
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I. The CMU DD Arm II . ]

We have developed, at CMU, the concept of direct-drive robots in which the links are directly coupled to the
motor shaft. This construction eliminates undesirable properties like [riction and gear backlash. The CMU DD
Arm I [14] is the second vession of the CMU direct-drive manipulator and is designed to be faster, lighter and

Inote accurate than its predecessor CMU DD Arm 112, We have used brushless eare-earth magnet DC torque
otors driven by current controlled amplifiers 10 schieve a torque controficd joint drive system. The SCARA-
type configuration of the ann reduces the the torqae requirements of the fiest two joints and also simplifics the
dynamic modcl of the arm. To achicve the desired accuracy, we use very high precision (16 bits/ rotation) rotary
absolute cncoders. The arm weighs approximately 70 pounds and is designed to achieve maximum joint
accelerations of 10 rad/sec”.

The hardware of the DD Arm Il control system consists of three integral comnponents: the Motorola M68030
microcomputer, the Marinco processor and the TMS-320 microprocessor-based individual joint controllers. We
have also developed the customized Newton-Euler equations for the CMU DD Arm Il and achicved a
computation time of 1 ms by implementing these on the Marinco processor. The details of the customized
algorithm, hardware configuration and the numerical values of the dynamics parameters are presented in (5.

Joint (j) | Transfer Function (J—lsz-) ky, ki
!
1 L 275 | 333
12352
2 - X 1.
S 150 | 15
3 1 2560 | 320
0.255?
.
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1
— X 50.0
5 0.006s? 6250
1
—— A 0.
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Table 1: Transfer Functions and Gains of Individual Links
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Flg‘urc I:  Schematic Diagram of 3 DOV DD Arm 1l Figure 2: Desired Trajectories for Joint 2
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